
11/02/03 R. Moore, Michigan State 1

MOAN: An Example of How to do a ROOT-based
DØ Analysis

Roger Moore

Michigan State University

11/02/03 R. Moore, Michigan State 2

Analysis with ROOT

�Why use ROOT for analysis?
� Interactive: no 30 minute recompiles of D0 executables
� Fast: highly optimised I/O means that ROOT jobs are I/O and not CPU limited
� Standard Environment: No need for entire D0 environment to look at a file if you have

compiled the libraries
� Probably need to learn ROOT to show plots in any case
� Excellent support

�...but it's not all good
� Not the worlds most stable program!
� Uses interpreted "C++" which has subtle (and irritating) differences from real C++
� C++ is not designed as a scripting language and it shows!

11/02/03 R. Moore, Michigan State 3

First Observations

�ROOT is missing one very useful PAW feature
� Inability to plot functions as if part of the data
� i.e. "nt/pl 1.yfunc%xfunc"

� Very useful for rapid testing of ideas
�D0 has many data formats!
� Thumbnail, RECO, custom physics groups...
� It does not need another!

�ROOT's standard interface is buggy and very different from normal C++
(heavy F77 influence!)

�Conclusion:
� Need a package which solves these problems

11/02/03 R. Moore, Michigan State 4

MOAN

�Authors: Jon Hays, Dave Evans and myself
�MOAN: Matched Object Analysis Network
� Try using ROOT for a while and you'll see why we chose this!

�Design
� Interchangeable use of pre-compiled and interpreted functions
� Simplified interface optimized for typical analysis tasks
� Expandable without needing to modify existing code, just adding new

� Easy upgrading to new versions
� Configurable from the command line...being added

11/02/03 R. Moore, Michigan State 5

Getting Started

�First you need to setup D0 CVS access and checkout the Moan package

> setup d0cvs

> cvs co Moan

cvs server: Updating Moan

U Moan/AUTHORS

U Moan/COPYING

...
�Now you also need to ensure that you have a valid D0RunII environment setup

and that you have a more recent ROOT version setup

> setup D0RunII p13.08.00

> setup root v3_03_09a -q KCC_4_0:exception:opt:thread

11/02/03 R. Moore, Michigan State 6

Getting Started

> autoheader
> automake -a
> autoconf
> automake

� IMPORTANT: You need to ensure that your ROOT version is 3.03/09 (or maybe
greater)
� Bug fixes this includes are required

�Now need to setup autoconf environment

�Run the configure script to actually create the Makefiles
� Must specify muo_cand version until package included in release

> ./configure �with-muo_cand=p13-br-03

11/02/03 R. Moore, Michigan State 7

Getting Started

> make

� Can also supply CVS tags to configure for all D0 packages used by MOAN
� Enables compatibility with any given ROOT file even if release has disappeared from disk
� You have to map the release name to CVS tag though

� Configure script has several other options
� Debug mode with --enable-debug

�Run configure with '--help' to see the full list
�Once configured, time to build the libraries...

11/02/03 R. Moore, Michigan State 8

Getting Started

// Load MOAN Libraries
gSystem.Load("$ROOTSYS/lib/libPhysics.so");
gSystem.Load("Moan/thumbnail/TMBTreeClasses.so");
gSystem.Load("Moan/analysis/analysis.so");
gSystem.Load("Moan/cuts/cuts.so");
gSystem.Load("Moan/analysis/cuts/analysis-cuts.so");
gSystem.Load("Moan/analysis/tmb/analysis-tmb.so");

�Now you have built all the libraries for MOAN
� All you need to do is load them into ROOT
� N.B. You will need to change the paths shown below...

� This should load all the libraries you need to instantiate all the MOAN classes
� Now you are ready to write an analysis...

11/02/03 R. Moore, Michigan State 9

Basic Concepts
� Analysis done using a tree-like structure of pre-compiled processor classes

� Each processor performs a single, simple action
� Matching
� Extracting objects from input source
� Filtering
� Calculating invariant masses etc..

� Pre-compiled classes required because ROOT interpreter cannot do virtual functions
� Macros assemble groups of processors into a framework to perform the actual analysis

� Allows framework to change without recompilation
� Eventually will add full set of methods to allow easy changing of the structure from the command

line...not all there yet

11/02/03 R. Moore, Michigan State 10

Dataflow

�Processors pass lists of objects between themselves
� Base object contains a 4-momentum and lists of matched objects
� Processors can add a list of matches to any object using their name as a key

� e.g. obj.match("MuPlus") will return the list of objects matched to 'obj' by the
'MuPlus' processor

� No new object formats needed if ROOT tree already has objects
� ObjectInterface template provided
� Inherits from given template argument and Moan's base physics object class
� e.g. ObjectInterface<TMBMuon> has exactly the same interface as a TMBMuon class as well as

that of a MOAN physics object

11/02/03 R. Moore, Michigan State 11

C++ Functions

�Need support for compiled and interpreted functions
� Makes customization easy

�ROOT has no concept of function pointers
� No support for interpreted virtual functions either!

�Solution: wrap all functions in pre-compiled classes
� Provide classes for both compiled (C++) and interpreted (ROOT) functions
� Templated but ROOT's use of templates requires prior knowledge of all instances

� Adding more function classes easy but needs recompilation
�For interpreted functions this is handled automatically

� Just provide the name of the function, MOAN will do the rest
�Compiled functions need to use the wrappers though

11/02/03 R. Moore, Michigan State 12

Input Formats
�Inputs can be from any source

� To support a format you need a processor class that can extract objects from a file and feed them to the
processor framework

� Several useful base classes provided to get access to data stored in ROOT Branches
� Currently code exists for d0analyze and Thumbnail ROOT formats

� Only instantiate providers for the objects which you want
� Avoids unpacking unwanted data and speeds up program...

� Unfortunately, due to a bug in ROOT, this does not work for Thumbnail ROOT files...yet
� Currently unpacking only some of the data is a LOT slower than unpacking all of it!
� Rene Brun & co aware of it, fix in next ROOT release

11/02/03 R. Moore, Michigan State 13

Making Plots

� All object processors (ones containing a list of objects) can have plots attached to them
� Filled everytime the processor is run

� An intermediate DataAlgorithm class is used to provide maximum flexibility for plots
� ObjectProperty: instantiated with a function which is run on every inout object
� MatchProperty: instantiated with matched object list name and a function which is run on each pair

of objects
� EventProperty: instantiated with a function which is given the entire list of input objects for that

event
� Other properties available or write your own!

11/02/03 R. Moore, Michigan State 14

Making Plots

� Data Algorithms plot the return values of functions
� e.g. a 'pT' function attached to an ObjectProperty will plot the pT of the output objects of the

processor.
� Separate Plotter processor being written to support multiple input sources

� e.g. nJets vs. nMuons
� 2D Plots supported

� single value vs. multiple values
� multiple values vs. multiple values if same number in each case

� Two different methods to add plots

add1DPlot(DataAlgorithm *,TH1 *)

add2DPlot(DataAlgorithm *,DataAlgorithm *,TH2 *)

11/02/03 R. Moore, Michigan State 15

Simple Example: Muon Isolation

� Simple example macro to plot the isolation of muons in a Thumbnail Tree file
� First we need to open the data file and create a histogram to fill

� Standard ROOT, nothing new

// Open the data file
TFile *data=new TFile("MyDataFile.root");
// Create the ECone Isolation histogram
TH1 *muisoh1=new TH1F("MuIsoH","#mu Isolation",
 0.,10.,50);

� Create a provider to extract the muons from the file

// Create a provider of thumbnail muons
ObjectProcessor *muons=new tmb::MuonProvider;

11/02/03 R. Moore, Michigan State 16

Simple Example: Muon Isolation

� Now we need to define a function to calculate the muon's E-Cone Isolation

// Calculate E-Cone Isolation of a Muon
// Defined as 0.4-0.15 cone energies
double eConeIso(void *dummy) {
 moan::ObjectInterface<TMBMuon> *mu=dummy;
 return mu->EInCone4()-mu->EInCone15();
}

� Create an object property data algorithm for it and add the plot to the provider

// Create the data algorithm for the isolation
DataAlgorithm *muisoalg=new ObjectProperty(eConeIso);
// Add the plot to the muon provider
muons->add1DPlot(muisoalg,muisoh1);

11/02/03 R. Moore, Michigan State 17

Simple Example: Muon Isolation
� Finally we need a special Analyser processor

� Processor which runs the processor framework attached to it over the data provided

a.execute() // Run analysis on all data

// Create the Analyser

moan::Analyser a("MuonIso",data);

a.addProcessor(muons); // Add the muon provider
� Create an object property data algorithm for it and add the plot to the provider

� At this point we just need to run the analysis
� Call the analyser execute method

� Takes optional arguments to limit the number of events to process and to skip events

� Histogram should now be filled...

11/02/03 R. Moore, Michigan State 18

Simple Example: Muon Isolation

E-Cone 0.4-0.15 (GeV)
0 1 2 3 4 5 6 7 8 9 10

-1
N

o.
 E

ve
nt

s
in

 3
0.

7p
b

0

50

100

150

200

250

300

 MCbb
30×Signal MC

Data

11/02/03 R. Moore, Michigan State 19

Anatomy of a Processor

�All processors are required to provide two methods
� Constructor to set up options and attach to child processors
� void doRun(void) which is called once (and only once) for each event that the

processor must process
� Object processors, ones providing a list of objects as an output have the following

methods
� Constructor to set up options and attach to child processors just as for a normal Processor
� void processData(void) which replaces the "doRun" method from the standard

processor
� void addObject(PhysicsObject *) which adds the given object to the

output list
�Easy to write your own if you need to...

11/02/03 R. Moore, Michigan State 20

Event Selection

�Processors great for filtering objects but sometimes need to filter events
� e.g. plot this only for events with 2 muons with pT> 5GeV/c

� MOAN provides two special classes to do this
� Decider: alters flow of the processor network
� Selector: examines input data and gives a 'true' or 'false'

� Decider has three special methods
� void addSelector(Selector *)
� void addPassProcessor(Processor *) adds a processor to run if the

selectors all return 'true'
� void addFailProcessor(Processor *) adds a processor to run if any

selector returns false
�ObjectSelector to count input objects provided

11/02/03 R. Moore, Michigan State 21

Example: Dimuon Analysis

�More complex macro to select and plot invariant masses of different sign, isolated muons
from a TMB ROOT file
�First create providers for muons and jets

ObjectProcessor *muon = new tmb::MuonProvider;
ObjectProcessor *jets = new tmb::JetProvider("JCCA");
�Now define the function to select "good" muons

// Returns 1 for a good muon
double goodMuon(void *dummy) {
 moan::ObjectInterface<TMBMuon> *mu=dummy;
 if(mu->nseg()!=3) return 0;
 if(mu->chisq()<0. || mu->chisq()>200.) return 0;
 return 1.;
}

11/02/03 R. Moore, Michigan State 22

Example: Dimuon Analysis

�...and then another couple of functions to select positive and negatively charged muons

// Return 1 for anti-muons (mu+)
double muPlus(void *dummy) {
 moan::ObjectInterface<TMBMuon> *mu=dummy;
 return mu->charge()>0. ? 1. : 0.;
}

// Return 1 for muons (mu-)
double muMinus(void *dummy) {
 moan::ObjectInterface<TMBMuon> *mu=dummy;
 return mu->charge()<0. ? 1. : 0.;
}

11/02/03 R. Moore, Michigan State 23

Example: Initial Framework

�Now that we have the functions and providers we need to create filter processors and
attach them

MuonProvider Good Muon

Mu +

Mu -

ObjectProcessor *goodmu =

 new moan::FunctionFilter("GoodMu",muon,*goodmuon);

ObjectProcessor *mup =

 new moan::FunctionFilter("MuPlus",goodmu,*muplus);

ObjectProcessor *mum =

 new moan::FunctionFilter("MuMinus",goodmu,*muminus);

11/02/03 R. Moore, Michigan State 24

Example: Calculating Masses

�Now we can create a processor to calculate the invariant mass of the mu+/- pairs
� Creates new 'mass' objects from lists of mu+ and mu-

ObjectProcessor *mumumass =

 new MassProcessor("MuMuMass",mup,mum);
�...and then a filter processor to select ones around the upsilon mass

� Needs a new function also defined here

// Selects masses in range 8-12 GeV/c2

double upsilonMass(void *dummy) {

 PhysicsObject *obj=dummy;

 return (obj->p().M()>=8.0 && obj->p().M()<=12.0) ? 1. : 0.;

}

ObjectProcessor *upsmass =

 new moan::FunctionFilter("UpsilonMass",mumumass,upsilonMass);

11/02/03 R. Moore, Michigan State 25

Example: Writing out Events

Processor *upsoutput =

 new moan::OutputFilter("UpsilonOut",upsmass,1,

 "upsilon.root");

�At this point we have a processor which has a list of all the mu+/- pair masses close to
the upsilon
� Suppose we want to now save these events?

�MOAN provides an output processor
� Will write out the current event from the input tree if the input processor has the given number of

objects (or more)
� Limited to only writing out data for which providers are instantiated
� ROOT limitation/bug, hopefully will be fixed...

11/02/03 R. Moore, Michigan State 26

Example: Adding Plots

�To add a plot first we need to create histograms...

TH1F *mumumh1 = new TH1F("MuMuMass",

 "#mu-#mu Mass",100, 0., 50.);

TH2F *mumumpth2 = new TH2F("MuMuPTvM",

 "#mu-#mu p_{T} vs. M", 60,0.,30., 100,0.,50.);

TH1F *upspth1 = new TH1F("UpsilonPT",

 "#Upsilon p_{T}",60, 0., 30.);

mumumass->add1DPlot(&oprop::M,mumumh1);

mumumass->add2DPlot(&oprop::pT,&oprop::M,mumumpth2);

upsmass->add1DPlot(&oprop::pT,upspth1);

�Now we can add the plot using a data algorithms already supplied in the library to plot
masses and pT of input objects

11/02/03 R. Moore, Michigan State 27

Example: Running the Analysis

�To actually run the analysis on a file we need to create a top level Analyser processor and give
it the TTree or TChain to process
� ...and then add the top level processors that we need to run, in this case the upsilon output processor

moan::Analyser a("Analysis",myTree);

a.addProcessor(upsoutput);

// Run over no more than 1000 events

a.execute(1000);

�Finally, to run the analysis we just call the Analyser's execute method with an optional
maximum number of events to process

�This will fill all the attached histograms

11/02/03 R. Moore, Michigan State 28

Example: Final Framework

 µ Provider

Good µ

µ+

µ-

 Massµµ

Upsilon MassOutput
Save

to disk

Read from

disk

11/02/03 R. Moore, Michigan State 29

Muon Candidate

�Muon canditate integrated with a special provider
� Select version to use with switch to the configure script

�Provider requires uses other providers to get data needed by algorithm

�Output is list of MuoCandidate wrapped objects
� Identical to official MuonID certified objects
� "LocalCentral" muons only at the moment

MuonCandProvider(MuonProvider *muons,

 JetProvider *jets,

 TrackProvider *tracks,

 VertexProvider *vertices,

 GlobalProvider *global);

11/02/03 R. Moore, Michigan State 30

How to Find out More...

�So far this tutorial is probably the best documentation for MOAN!
�However source code is carefully documented using doxygen-style comments
� Best place to look is in the C++ header files: *.hpp

�Code is still changing and source code is the one place guarenteed to be
uptodate!

�Current state is ~beta: most things work most of the time
� Still need to be willing to look at C++ code but should not need to delve into the innards

of ROOT!

11/02/03 R. Moore, Michigan State 31

Things To Do

� Lots of ideas for improvements...but not enough time to add them all!
� Outputing lists of objects and their matches
� Load back in a saved analysis and continue

� Make interface to Harry M's D0 cuts package work...it compiles!
� moan::Filter *mufilt = new
moan::Filter("LowMassMu",musrc,cutfunc::M<10.);

� More event level quantity support: more selectors
� Utility macros to set up simple frameworks
� Member function caller to avoid need to write functions and object properties for every method of a

class
� In and compiles, haven't had a chance to test it yet...

� People are welcome to jump in and add their own code
� So far development driven by authors' analyses

11/02/03 R. Moore, Michigan State 32

Conclusions

� ROOT based analysis works
� Being used for SUSY like-sign dimuon analysis and others

� Major advantage is speed
� Rapid, interactive analysis
� Fast: even with current bug takes ~30-50ms/event on 1GHz pentium III CPU
� When bug fixed expect faster processing

� Would be nice if D0 could agree on ONE format for ROOT that everyone could use
� d0analyze, TMBTree, custom physics group formats all in mix
� Common object interface hierarchy would be EXTREMELY useful
� ...but needs lot of agreement and common effort

